Dynamical System Analysis - L-CDM

less than 1 minute read

Published:

$\Lambda-\mathrm{CDM}$ is the simplest model that is widely consistent with the observations.

The following set of equations describe the system:

\[\begin{align} \begin{split} \Omega'_{\text{m}} &= \Omega_{\text{m}}(\Omega_{\text{r}} -3 \Omega_\Lambda )\\[1ex] \Omega'_{\text{r}} &= \Omega_{\text{r}}(\Omega_{\text{r}} -3 \Omega_\Lambda - 1 )\\[1ex] \Omega'_\Lambda &= \Omega_\Lambda (\Omega_{\text{r}} - 3\Omega_\Lambda + 3) \end{split} \end{align}\]

Using the constraint equation $\Omega_{\text{m}} + \Omega_{\text{r}} + \Omega_{\Lambda} = 1$, the system can be reduced to 2 dimensions,

\(\begin{align} \begin{split} \Omega'_{\text{m}} &= \Omega_{\text{m}}(3\Omega_{\text{m}} + 4\Omega_{\text{r}} -3 )\\[1ex] \Omega'_{\text{r}} &= \Omega_{\text{r}}(3\Omega_{\text{m}} + 4\Omega_{\text{r}} -4 ) \end{split} \end{align}\) where we have eliminated the $\Omega_\Lambda$ term.

Matter - Radiation - Lambda Model

You can use the following code to generate phase space diagram..

import numpy as np
import matplotib.pyplot as plt
import sympy as sp
import scipy.odeint

def system(m,r,l,t):
  .
  .
  .
  .

add gist